Reconstruction of Functions in Spline Subspaces from Local Averages
نویسندگان
چکیده
In this paper, we study the reconstruction of functions in spline subspaces from local averages. We present an average sampling theorem for shift invariant subspaces generated by cardinal B-splines and give the optimal upper bound for the support length of averaging functions. Our result generalizes an earlier result by Aldroubi and Gröchenig.
منابع مشابه
Generalized Sampling Theorems in Multiresolution Subspaces - Signal Processing, IEEE Transactions on
It is well known that under very mild conditions on the scaling function, multiresolution subspaces are reproducing kernel Hilbert spaces (RKHS’s). This allows for the development of a sampling theory. In this paper, we extend the existing sampling theory for wavelet subspaces in several directions. We consider periodically nonuniform sampling, sampling of a function and its derivatives, oversa...
متن کاملStability Criteria for Rectangular Plates Subjected to Intermediate and End Inplane Loads Using Spline Finite Strip Method
This paper is concerned with elastic local buckling of rectangular plates subjected to intermediate and end inplane loads. Since closed form solution for buckling analysis of plates with different end conditions and subjected to intermediate loads is complicated, numerical methods are more useful. Because of restrictions on the two finite strip methods, the longitudinal B3 spline expressions co...
متن کامل3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)
Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...
متن کاملQuasi-interpolants Based Multilevel B-Spline Surface Reconstruction from Scattered Data
This paper presents a new fast and local method of 3D surface reconstruction for scattered data. The algorithm makes use of quasiinterpolants to compute the control points from a coarse to fine hierarchy to generate a sequence of bicubic B-spline functions whose sum approaches to the desired interpolation function. Quasi-interpolants gives a procedure for deriving local spline approximation met...
متن کاملReconstruction in Time-warped Weighted Shift-invariant Spaces with Application to Spline Subspaces
We discuss the reproducing kernel structure in shift-invariant spaces and the weighted shift-invariant spaces, and obtain the reconstruction formula in time-warped weighted shift-invariant spaces, then apply them to a spline subspace. In the spline subspace, we give a reconstruction formula in a time-warped spline subspace. 1. Introduction. The problem of reconstruction of a function f has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003